ENCS3390- Operating Systems

Problem Set #2

October 2021

1. Suppose that the following processes arrived in order. Each process will run for the amount of time listed, using nonpreemptive scheduling, answer the questions below:

Process	Burst Time	
P1	4	
P2	7	
Р3	12	
P4	10	

- a. Using the FCFS scheduling algorithm, draw the Gantt chart for the schedule and calculate the average turnaround time and the average waiting time for these processes.
- b. Using the SJF scheduling algorithm, draw the Gantt chart for the schedule and calculate the average turnaround time and the average waiting time for these processes.
- Assume the processes shown in the table below arrived at time 0 in order. Moreover, the table below shows the CPU burst time in milliseconds and the priority of each process. Larger priority number implies higher priority. Answer the following questions:

Process	Burst Time	Priority
P1	8	2
P2	5	4
P3	10	3
P4	6	3
P5	1	1

- a. Draw four Gantt charts that illustrate the execution of these processes using the following scheduling algorithms (FCFS, SJF, nonpremeptive priority, RR with time quantum = 4)
- b. Calculate the turnaround time of each process for each of these four algorithms.
- c. Calculate the waiting time of each process for each of these four algorithms.
- d. Which of these four algorithms results in the minimum average time (over all processes)?
- 3. Given the processes shown in the following table along with their arrival time, CPU burst time, and priority. Smaller priority number implies higher priority. Answer the following questions:

Process	Arrival Time	Burst Time	Priority
P1	1	10	4
P2	2	8	2
P3	3	4	5
P4	4	9	1
P5	5	2	3

- Draw two Gantt charts that illustrate the execution of these processes using preemptive SJF and preemptive priority scheduling.
- b. Calculate the turnaround time of each process for each of these two algorithms
- c. Calculate the waiting time of each process for each of these two algorithms
- d. Calculate the average waiting time and the average turnaround time of all processes for each of these two algorithms.
- 4. What are the five scheduling criteria? Which ones need to be maximized, and which ones need to be minimized?
- 5. What is the difference between preemptive and nonpreemptive scheduling?
- 6. What is the difference between I/O-bound programs and CPU-bound programs?

- 7. What advantage is there in having different time-quantum sizes at different levels of a multilevel queueing system?
- 8. Which of the scheduling algorithms we studied could result in starvation? How the starvation problem is resolved?
- 9. Explain the differences in how much the following scheduling algorithms discriminate in favor of short processes:
- a. FCFS b. RR c. multilevel feedback queues
- 10. Distinguish between PCS and SCS scheduling.
- 11. Distinguish between soft real time and hard real time systems.
- 12. How the relation between the CPU burst time and the time quantum for RR scheduling should be? Explain why.
- 13. How the relation between time quantum for RR scheduling algorithm, and the context switch time should be? Explain why.
- 14. What is the job of dispatcher, and what is the dispatch time/latency?